Well Posedness and Regularity for the Elasticity Equation with Mixed Boundary Conditions on Polyhedral Domains and Domains with Cracks

نویسندگان

  • Anna Mazzucato
  • Victor Nistor
  • ANNA MAZZUCATO
  • VICTOR NISTOR
  • Michael E. Taylor
چکیده

We prove a regularity result for the anisotropic elasticity equation Pu := div ` C · ∇u) = f , with mixed (displacement and traction) boundary conditions Lk on a curved polyhedral domain Ω ⊂ R 3 in weighted Sobolev spaces Ka (Ω), for which the weight given by the distance to the set of edges. In particular, we show that there is no loss of Ka –regularity. Our curved polyhedral domains are allowed to have cracks. We establish a well-posedness result when there are no neighboring traction boundary conditions and |a| < η, for some small η > 0 that depends on P and Lk and the domain Ω. Our results extend to other strongly elliptic systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity and Well Posedness for the Laplace Operator on Polyhedral Domains

We announce a well-posedness result for the Laplace equation in weighted Sobolev spaces on polyhedral domains in R with Dirichlet boundary conditions. The weight is the distance to the set of singular boundary points. We give a detailed sketch of the proof in three dimensions.

متن کامل

Regularity and Well Posedness for the Laplace Operator on Polyhedral Domains

We announce a well-posedness result for the Laplace equation in weighted Sobolev spaces on polyhedral domains in Rn with Dirichlet boundary conditions. The weight is the distance to the set of singular boundary points. We give a detailed sketch of the proof in three dimensions.

متن کامل

Anisotropic Regularity and Optimal Rates of Convergence for the Finite Element Method on Three Dimensional Polyhedral Domains

We consider the model Poisson problem −∆u = f ∈ Ω, u = g on ∂Ω, where Ω is a bounded polyhedral domain in Rn. The objective of the paper is twofold. The first objective is to review the well posedness and the regularity of our model problem using appropriate weighted spaces for the data and the solution. We use these results to derive the domain of the Laplace operator with zero boundary condit...

متن کامل

Boundary Value Problems and Regularity on Polyhedral Domains

We prove a well-posedness result for second order boundary value problems in weighted Sobolev spaces on curvilinear polyhedral domains in Rn with Dirichlet boundary conditions. Our typical weight is the distance to the set of singular boundary points.

متن کامل

Analysis of the Finite Element Method for Transmission/mixed Boundary Value Problems on General Polygonal Domains

We study theoretical and practical issues arising in the implementation of the Finite Element Method for a strongly elliptic second order equation with jump discontinuities in its coefficients on a polygonal domain Ω that may have cracks or vertices that touch the boundary. We consider in particular the equation − div(A∇u) = f ∈ H(Ω) with mixed boundary conditions, where the matrix A has variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006